LecDem Blog

Demonstration Highlight: Simple Harmonic Motion & Uniform Circular Motion

Today we’re looking at two demonstrations that are often used, individually or together, to discuss simple harmonic motion. Demonstration G1-11: Comparison of Simple Harmonic Motion and Uniform Circular Motion, is a simple mechanical model with a large rotating arm with a disc mounted on it. As the arm-mounted disc rotates around the center, we can see that its motion describes a circle in space. The arm is linked mechanically to a second disc mounted above, that slides back and forth as the arm rotates. The upper disc keeps pace with the lower disc, and as the arm rotates, the upper disc moves back and forth as though it were mounted on a spring.

Demonstration G1-12: Pendulum and Rotating Ball, lets us see that this is not just a coincidence of the model. A ball is mounted as the bob on a rigid pendulum, while an identical ball is mounted on a rotating platform below. The rotating platform is motorized so that it will spin at a constant speed; the pendulum is of an appropriate length so that the period of the swing is the same as the rotational period of the platform. If you start them moving from the same point at the same time, then you can see that the two balls move in sync. By positioning a bright light in front of the apparatus we can project the shadows of both balls on the wall behind, and we can see that the two balls are executing nearly the same motion.

 Two images: In one, a black disc is mounted on a rotating arm on a wooden base, with another black disc mounted above it in a sliding mount; in the second, a ball on the end of a rod hangs above a ball on a rotating platform, the shadows of both of which are projected against the wall in the background.

A ball executing simple harmonic motion – the motion of a pendulum bob – is equivalent to the projection of a ball executing uniform circular motion. This is not just a coincidence of the apparatus, but a fundamental discovery about the mathematics behind repeating motion.

a graph of the cosine function, of amplitude A and period T

(diagram based on public domain work by Wikimedia user Yohai)

 If we make a graph of the linear position of a point on the rotating disc as a function of time, that graph traces out a repeating curve – a curve we can describe with the cosine function, Acos(ɷt), where A is the radius from the center of the circle to the point and t is time. For those of you who have studied the behaviour of harmonic oscillators, that function should look familiar – it’s the same way we describe an object oscillating without damping, what’s called simple harmonic motion. ɷ (omega) is the rate of rotation of the disc, and equivalent to the angular frequency of the oscillation. And conversely, if you made a graph of the velocity of an oscillating mass against its position, rather than plotting the position or the velocity against time, that graph would also trace out a circle. It’s not just a coincidence, but reality – rotational motion and oscillating motion are fundamentally the same phenomenon from a mathematical perspective, just looked at in different dimensions.

 Simple harmonic motion animation 1Simple Harmonic Motion Orbit

 (PD Animation credits: Wikimedia users Chetvorno & Mazemaster)


This simulator, by Andrew Duffy of Boston University, lets us model this behaviour on the screen, and see what happens when we change parameters of the motion. Check it out at .

 This simulator lets us view this motion in real time. Press Play and see a point rotating on the disc, while two more masses oscillate on springs vertically and horizontally next to the disc. The graph plots out the vertical motion of both the point on the disc and the vertical oscillator over time. You can click the checkbox at the bottom of the screen to form virtual lines between the masses, to show they’re in sync.

Now try changing the experiment. There are two sliders at the bottom of the simulation. The slider on your left lets you change ɷ – try speeding it up and watch what happens! The slider on your right lets you change the radius of the disc, and thus the amplitude of the oscillation.

 Try it out for yourself! And think about where else you’ve seen graphs like that. There are many other physical phenomena that obey similar mathematics, including all types of waves. What examples can you think of?

More Articles ...

  1. STEM News Tip: Meteor Showers and Rain Showers
  2. STEM News Tip: Sonic Tourism
  3. Demonstration Highlight: Electromagnet
  4. STEM News Tip: Mars 2020 launches this week!
  5. STEM News Tip: Nova Reticuli 2020
  6. How many demonstrations?
  7. STEM News Tip: Solar Observer webcast this week!
  8. STEM News Tip: Children Learning About Gears
  9. Space News: The Nancy Grace Roman Space Telescope
  10. Demo Highlight: Vector Addition
  11. Demonstration Highlight: The Pencil and Plywood Experiment
  12. Demo Highlight: The Ripple Tank and a Ripple Tank Simulator
  13. Demo Highlight: The Racing Balls in Slow Motion
  14. Happy birthday, Alexander Müller
  15. New Demonstration: The Paramagnetism of a Dysprosium Pendulum
  16. Welcome to Spring 2020
  17. Light Up the Night: Neon and "Neon" Lights
  18. A Heated Discussion In Class
  19. The Physics Soda Can Returns: Electrostatic Induction
  20. Physics Teatime 3: Do Not Try This At Home
  21. Introducing Our Newest Center of Mass Demonstration
  22. FLIGHT!
  23. Happy Birthday Carl Sagan
  24. Hot Air Balloon
  25. Upcoming Events at UMD Physics!
  26. Welcome to Fall 2019!
  27. Summer Hiatus
  28. Phun with Electrons: Particle or Wave?
  29. Physics Teatime 2: On The Making Of Tea
  30. On the Choosing of Demonstrations
  31. Teatime in Physics
  32. Happy Birthday to Émilie du Châtelet
  33. Seeing Sound: Vibrations on a Plate
  34. Women Nobel Laureates in Physics
  35. Coming Soon: Physics is Phun presents Induction and Deduction
  36. New Portable Ripple Tank
  37. Irene Joliot-Curie
  38. New Demos: Buoyancy and Electromagnetic Forces
  39. Falling into Free Fall
  40. Happy 100th Birthday Katherine Johnson!
  41. Demonstration Orders for the Fall Semester
  42. Welcome!