A recurring favourite optics demonstration in many of our classes is N1-05 Spectra: Visible and Invisible. This seemingly simple setup can show us some important truths about electromagnetic radiation.

 n1-05: arc lamp, lenses, and prism on a rail

A carbon arc lamp is used to create a bright, broad-spectrum white light. This is an example of what is known (confusingly) as blackbody radiation, the light that an object emits due to its temperature. Technically, a hot object radiates light across many frequencies, but what we think of as its “color” is made up of the frequency ranges with the greatest intensity, which depends on the object’s temperature. This we see here a bright blue-white light, with high emission across all the visible frequencies.

 Lenses right next to the source focus this light onto a narrow slit, which then passes a narrow beam of light, focused by an additional lens, to a prism. The prism refracts the light at different angles depending on its frequency. So projected onto the wall we will see, rather than a spot of bright white light, a spectrum of all the colors making up the light.

 But here’s what’s interesting about this carbon arc lamp. Not all of the light is in that visible range! We have a fluorescent screen, which glows in the visible light range when it absorbs higher-frequency ultraviolet light; using this, we can see that there are bright bands of ultraviolet light off beyond the blue end of the visible spectrum on the wall.

 So does this mean there’s something off beyond the red end as well? To check this, we have a thermopile, a horn containing a series of sensors that sense when they get warm. Using this, connected to an audio oscillator that changes pitch when the thermopile senses heat, we can scan across the wall… and indeed, we can hear the pitch change when the horn is in the dark area past the red end of the spectrum. There is infrared light hiding here, frequencies too low for us to see!

 To learn more about light spectra, check out this simulation from the University of Colorado’s PhET Collection: Blackbody Radiation

You can vary the temperature of your source and see how that changes not only the intensity of light, but its color – or, more accurately, its distribution of color. A light source can radiate light across a broad range of frequencies, which may be centered within, above, or below the range we can see. Try it out for yourself, compare the spectra of a household lightbulb to the Sun or another star, and see if you can guess the temperature of the arc lamp we use here!