Wednesday, 25 June 2014 15:23

## I1-22: WATER DENSITY VS TEMPERATURE

• ID Code: I1-22
• Purpose: Demonstrate the change in the density of water with temperature.
• Description:

A calibrated thin spherical metal shell with air and shot inside sinks in water at approximately 115-120 degrees F. The water is then cooled by a fan, whereupon the sphere rises to the top of the water when a temperature of about 100-110 degrees F is reached (this cooling can take up to 15 minutes depending on room temperature and humidity).

The water can be stirred continually to keep the temperature uniform using the digital thermometer probe, which simultaneously reads the temperature, which is displayed on a large scale. If the sphere starts out floating and is sunk by heating the water, the demonstration requires more time due to surface tension.

• Availability: Available
• Loc codes: I0, I1
• #### I1-01: THERMOMETERS

Show several types of thermometers. Read More

• #### I1-13 THERMAL EXPANSION - BIMETAL STRIP

Demonstrate differential thermal expansion. Read More
• #### I1-14: THERMAL EXPANSION OF ALUMINUM - OPTICAL LEVER

Demonstrate thermal expansion in a complicated way. Read More
• #### I1-15: THERMAL EXPANSION - PIN BREAKER

Demonstrate thermal expansion in a dramatic way. Read More
• #### I1-16: THERMAL CONTRACTION OF CUPS WITH LN

Measure coefficients of linear expansion. Read More
• #### I1-17: THERMOSTAT - MODEL

Model of use of a bimetal strip in a thermostat. Read More
• #### I1-18: BIMETALLIC STRIP THERMOMETERS

Allow students to see how bimetallic strips are used in thermometers and thermostats. Read More
• #### I1-19: LAVA LAMP

Demonstrate differential thermal expansion between two liquids, and to take us all back to the 1960s. Read More
• #### I1-21: WATER NEAR 4 DEGREES CELCIUS

Demonstrate that the maximum density of water occurs around 4 degrees centigrade. Read More
• #### I1-22: WATER DENSITY VS TEMPERATURE

Demonstrate the change in the density of water with temperature. Read More
• #### I1-32: RUBBER BAND CONTRACTION DURING HEATING

To demonstrate that rubber contracts when heated. Read More
• #### I1-40: REVERSIBLE THERMOELECTRIC DEMONSTRATOR

Demonstrate thermoelectric power generation or how thermoelectric devices can create hot and cold regions. Read More
• #### I1-41: THERMOELECTRIC MAGNET

Demonstrate production and use of thermoelectric current. Read More
• #### I1-42: THERMOELECTRIC FAN

Illustrate generation and use of thermoelectric current. Read More
• #### I1-51: RUBBER AT LN TEMPERATURE

Demonstrate how a normally elastic material at room temperature becomes rigid at very low temperatures. Read More
• #### I1-52: TUNING FORK AT LIQUID NITROGEN TEMPERATURE

Demonstrate the change in frequency of a tuning fork at liquid nitrogen temperature. Read More
• #### I1-53: LEAD BELL AT LIQUID NITROGEN TEMPERATURE

Demonstrate the effect of temperature on vibrations in a lead bell. Read More
• #### I1-61: DUST EXPLOSION

Produce a dust explosion. Read More
• #### I1-62: DUST EXPLOSION MODEL

Show why small particles of flammable material can create a dust explosion when ignited. Read More
• #### I1-63: HYDROGEN EXPLOSION

Produce a hydrogen explosion. Read More