Follow
Home
About Us
Facility Staff
Directions
Demonstration Services
Demonstrations
Place an Order
For Regularly Held Classes
For Special Events
How to Place a Demonstration Request
Demonstrations by Class
Requested Demonstrations
Faculty Forum
Outreach Forms
Liquid Nitrogen for Demonstrations
Tools & Resources
Demonstration Videos
Teaching Aid Animations
Directory of Simulations
LecDem Blog
UMD Physics Climate Committee
Discussion Forum
Links for Educators
Archived LecDem Site (~1996-2008)
Bibliography
UMD Society of Physics Students
Outreach Program Demonstrations
Outreach Programs
Outreach Program Materials
Popular Demos for Classes
News
UMD COVID-19 Dashboard
Outreach Program Homepage
UMD Physics Summer Programs
Conference for Undergraduate Underrepresented Minorities in Physics
Maryland STEM Festival
Profiles in Physics @ UMD
Quotes from our fans!
Physics is Phun October 2022
Contact Us
Monday, 16 June 2014 14:47
D5-12: CORIOLIS EFFECT - WATER JET
font size
decrease font size
increase font size
Print
Email
Additional Info
ID Code:
D5-12
Purpose:
Model the Coriolis effect.
Description:
Fill the can with water and rotate the entire can-tank assembly on its platform. The water jet exhibits a curved trajectory which is an analog to the curvature of the trajectory of a projectile on earth due to the Coriolis effect.
Availability:
Available
References:
REFERENCES: (PIRA 1E30.30)
Loc codes:
OS10
Read
2139
times
Last modified on Wednesday, 07 April 2021 12:53
Tweet
Published in
D5 Rotational Esoterica
Tagged under
Needs New Photo
Rotational Dynamics
Dynamics of Fluids
More in this category:
« D5-11: CORIOLIS EFFECT - BALL ON ROTATING PLATFORM
D5-21: BALL ROLLING ON ROTATING DISC »
back to top
A General Materials and Mathematics
A1 Basic Materials and Measurement
A2 Mathematics
B Statics
B1 Center of Mass Statics
B2 Equilibrium of Forces and Torques
B3 Simple Machines
B4 Elasticity
C Kinematics and Dynamics
C1 Center of Mass Motion
C2 Kinematics in One and Two Dimensions
C3 First Law of Motion
C4 Second Law of Motion
C5 Third Law of Motion
C6 Friction
C7 Collisions
C8 Mechanical Energy and Power
D Rotational Mechanics
D1 Rotational Kinematics and Dynamics
D2 Moment of Inertia
D3 Angular Momentum
D4 Gyroscopes
D5 Rotational Esoterica
E Gravitation and Astronomy
E1 Gravitation and Orbits
E2 Astronomy
F Fluid Mechanics
F1 Pressure in Static Fluids
F2 Buoyancy
F3 Surface Tension
F4 Fluid in Motion
F5 Forces in Moving Fluids
G Vibrations and Mechanical Waves
G1 Simple Harmonic Motion
G2 Resonance and Coupled Oscillations
G3 Mechanical Waves - One Dimensional
G4 Mechanical Waves - Two Dimensional
H Sound
H1 Nature of Sound
H2 Wave Properties of Sound
H3 Standing Sound Waves
H4 Music
H5 The Ear
H6 The Voice
I Thermodynamics
I1 Thermal Properties of Matter
I2 Transfer of Heat
I3 Gases
I4 Changes of State
I5 Laws of Thermodynamics
I6 Kinetic Theory and Statistical Mechanics
I7 Solid State and Low Temperature Physics
J Electostatics and Magnetostatics
J1 Electrostatic Charge and Force
J2 Electrostatic Devices and Applications
J3 Electric FIelds and Potential
J4 Capacitance and Polarization
J5 Magnetostatics
J6 Electromagnets
J7 Magnetic Materials
K Electromagnetic Principles
K1 Forces on Moving Charges
K2 Electromagnetic Induction
K3 Transformers
K4 Motors and Generators
K5 Electrical Properties of Matter
K6 Electric Circuits and Instruments
K7 RLC Circuits
K8 Electromagnetic Waves and Sources
L Geometrical Optics
L1 Light Sources and Light Rays
L2 Plane Mirrors
L3 Curved Mirrors
L4 Refraction
L5 Total Internal Reflection
L6 Lenses
L7 Optical Instruments
M Wave Optics
M1 Interference and Diffraction - Slits and Gratings
M2 Diffraction - Circular
M3 Interferometers
M4 Thin Film Interference
M5 Interference and Diffraction Esoterica
M6 Holograms
M7 Linear Polarization and Scattering
M8 Optical Activity and Birefringence
M9 Circular Polarization
N Spectra and Color
N1 Continuous Spectra
N2 Line Spectra
N3 Color
O Vision
O1 Image Production
O2 Visual Latency
O3 Color Vision
O4 Optical Illusions
P Modern Physics
P1 Relativity
P2 Quantum Mechanics
P3 Atoms and Molecules
P4 Nuclei and Particles
Q Biophysics
Q1 Musculoskeletal Systems
Q2 Organs
Q3 Genetics and Molecular Biology
D5-01 TIPPE TOP
Gyroscopic effect examples
Read More
D5-02: FOOTBALL
Example of a gyroscopic effect
Read More
D5-04: SPINNING BOOK
Illustrate the effect rotation about the various principal axes on stability
Read More
D5-05 CELTS
Illustrates a weird rotational device
Read More
D5-06: FIDDLESTICK
Illustrate weird rotational effects and to demonstrate transformation of gravitational potential energy into rotational energy
Read More
D5-07: STABLE AND UNSTABLE PRINCIPAL AXES
Show that rotation about the principal axis of smaller moment of inertia is unstable and changes to rotation about the
…
Read More
D5-08: WINEGLASS AND OLIVE
Conundrum involving angular motion
Read More
D5-11: CORIOLIS EFFECT - BALL ON ROTATING PLATFORM
Illustrate the Coriolis effect
Read More
D5-12: CORIOLIS EFFECT - WATER JET
Model the Coriolis effect
Read More
D5-13: FOCAULT PENDULUM - MODEL
Model the Foucault pendulum
Read More
D5-21: BALL ROLLING ON ROTATING DISC
Show that a sphere rolling on a rotating disc will move in circles
Read More
D5-22: ROTATING PENDULUM
Demonstrate the presence of a "critical parameter" which determines the dynamic behavior of a simple physical system
Read More
D5-23: ROTATING BEAD ON LOOP
Demonstrate the presence of a "critical parameter" which determines the dynamic behavior of a simple physical system
Read More
D5-24: ROTATING PENDULA - LENGTH VS. HEIGHT
Show that pendula of different length suspended from the same point rotating at the same angular speed rise to the
…
Read More
1