Follow
Home
About Us
Facility Staff
Directions
Demonstration Services
Demonstrations
Place an Order
For Regularly Held Classes
For Special Events
How to Place a Demonstration Request
Demonstrations by Class
Requested Demonstrations
Faculty Forum
Outreach Forms
Liquid Nitrogen for Demonstrations
Tools & Resources
Demonstration Videos
Teaching Aid Animations
Directory of Simulations
LecDem Blog
UMD Physics Climate Committee
Discussion Forum
Links for Educators
Archived LecDem Site (~1996-2008)
Bibliography
UMD Society of Physics Students
Outreach Program Demonstrations
Outreach Programs
Outreach Program Materials
Popular Demos for Classes
News
UMD COVID-19 Dashboard
Outreach Program Homepage
UMD Physics Summer Programs
Conference for Undergraduate Underrepresented Minorities in Physics
Maryland STEM Festival
Profiles in Physics @ UMD
Quotes from our fans!
Physics is Phun October 2022
Contact Us
PHYS272
K2-21: RUHMKORFF INDUCTION COIL
Category:
K2 Electromagnetic Induction
Purpose
:
Demonstrate induction of a very high voltage using a small voltage source.
K2-12: SELF-INDUCTION - DEMOUNTABLE TRANSFORMER
Category:
K2 Electromagnetic Induction
Purpose
:
Demonstrate back-EMF in an inductor.
J7-01: LODESTONE
Category:
J7 Magnetic Materials
Purpose
:
Demonstrate the natural magnetism of lodestone.
J6-03: ELECTROMAGNET WITH JUNK - WITHOUT CORE
Category:
J6 Electromagnets
Purpose
:
Demonstrate electromagnetism.
J6-02: ELECTROMAGNET WITH JUNK
Category:
J6 Electromagnets
Purpose
:
Demonstrate an electromagnet.
J5-36: MAGNETIC SPINNER
Category:
J5 Magnetostatics
Purpose
:
Demonstrate magnetic levitation.
J5-05: MAGNET MODEL - FIELD LINES
Category:
J5 Magnetostatics
Purpose
:
Visualize the magnetic field of a bar magnet.
J4-12: ELECTROSTATIC FORCE - MOVING LUMBER
Category:
J4 Capacitance and Polarization
Purpose
:
Demonstrate polarization of water molecules.
J3-22: FARADAY CAGE - ELECTROSCOPE
Category:
J3 Electric Fields and Potential
Purpose
:
Demonstrate that the electric field within a closed surface is zero.
J3-07: VAN DE GRAAFF - DISCHARGE TO VARIOUS RADII
Category:
J3 Electric Fields and Potential
Purpose
:
Demonstrate that for a charged conductor a smaller radius produces a higher electric field.
K1-31: MAGNETOHYDRODYNAMIC GENERATOR
Category:
K1 Forces on Moving Particles
Purpose
:
Illustrate magnetohydrodynamic forces.
C7-12: COLLISION OF BALLS - ONE LIGHTER MASS
Category:
C7 Collisions
Purpose
:
Show what happens when one mass in a collision ball set is different from the others.
K2-63: DISPLACEMENT CURRENT MODEL
Category:
K2 Electromagnetic Induction
Purpose
:
Illustrate the geometry for displacement current
K2-41: LENZ'S LAW - ROLLING RODS
Category:
K2 Electromagnetic Induction
Purpose
:
Demonstrate eddy currents and Lenz's law
J5-51: GAUSSMETER
Category:
J5 Magnetostatics
Purpose
:
Demonstrate use of a gaussmeter
J5-04: MAGNETS
Category:
J5 Magnetostatics
Purpose
:
Show various magnets
J1-12: INDUCTION - ELECTROSCOPE
Category:
J1 Electrostatic Charge and Force
Purpose
:
Demonstrate charging by induction.
J6-04: LOW-POWER HIGH-FORCE ELECTROMAGNET
Category:
J6 Electromagnets
Purpose
:
Show that a small amount of energy can produce large magnetic forces
K8-03 LIGHT NANOSECOND
Category:
K8 Electromagnetic Waves and Sources
Purpose
:
Shows the distance light travels in one nanosecond
K8-01 ELECTROMAGNETIC WAVE - MODEL
Category:
K8 Electromagnetic Waves and Sources
Purpose
:
Shows the relationship between the electric and magnetic field vectors in a plane-polarized traveling electromagnetic wave
Start
Prev
1
2
3
4
Next
End
Page 2 of 4
A General Materials and Mathematics
A1 Basic Materials and Measurement
A2 Mathematics
B Statics
B1 Center of Mass Statics
B2 Equilibrium of Forces and Torques
B3 Simple Machines
B4 Elasticity
C Kinematics and Dynamics
C1 Center of Mass Motion
C2 Kinematics in One and Two Dimensions
C3 First Law of Motion
C4 Second Law of Motion
C5 Third Law of Motion
C6 Friction
C7 Collisions
C8 Mechanical Energy and Power
D Rotational Mechanics
D1 Rotational Kinematics and Dynamics
D2 Moment of Inertia
D3 Angular Momentum
D4 Gyroscopes
D5 Rotational Esoterica
E Gravitation and Astronomy
E1 Gravitation and Orbits
E2 Astronomy
F Fluid Mechanics
F1 Pressure in Static Fluids
F2 Buoyancy
F3 Surface Tension
F4 Fluid in Motion
F5 Forces in Moving Fluids
G Vibrations and Mechanical Waves
G1 Simple Harmonic Motion
G2 Resonance and Coupled Oscillations
G3 Mechanical Waves - One Dimensional
G4 Mechanical Waves - Two Dimensional
H Sound
H1 Nature of Sound
H2 Wave Properties of Sound
H3 Standing Sound Waves
H4 Music
H5 The Ear
H6 The Voice
I Thermodynamics
I1 Thermal Properties of Matter
I2 Transfer of Heat
I3 Gases
I4 Changes of State
I5 Laws of Thermodynamics
I6 Kinetic Theory and Statistical Mechanics
I7 Solid State and Low Temperature Physics
J Electostatics and Magnetostatics
J1 Electrostatic Charge and Force
J2 Electrostatic Devices and Applications
J3 Electric FIelds and Potential
J4 Capacitance and Polarization
J5 Magnetostatics
J6 Electromagnets
J7 Magnetic Materials
K Electromagnetic Principles
K1 Forces on Moving Charges
K2 Electromagnetic Induction
K3 Transformers
K4 Motors and Generators
K5 Electrical Properties of Matter
K6 Electric Circuits and Instruments
K7 RLC Circuits
K8 Electromagnetic Waves and Sources
L Geometrical Optics
L1 Light Sources and Light Rays
L2 Plane Mirrors
L3 Curved Mirrors
L4 Refraction
L5 Total Internal Reflection
L6 Lenses
L7 Optical Instruments
M Wave Optics
M1 Interference and Diffraction - Slits and Gratings
M2 Diffraction - Circular
M3 Interferometers
M4 Thin Film Interference
M5 Interference and Diffraction Esoterica
M6 Holograms
M7 Linear Polarization and Scattering
M8 Optical Activity and Birefringence
M9 Circular Polarization
N Spectra and Color
N1 Continuous Spectra
N2 Line Spectra
N3 Color
O Vision
O1 Image Production
O2 Visual Latency
O3 Color Vision
O4 Optical Illusions
P Modern Physics
P1 Relativity
P2 Quantum Mechanics
P3 Atoms and Molecules
P4 Nuclei and Particles
Q Biophysics
Q1 Musculoskeletal Systems
Q2 Organs
Q3 Genetics and Molecular Biology
J3-01: EXISTENCE OF ELECTRIC FIELDS
Demonstrate the existence of electric fields and to map them semi-quantitatively
Read More
J3-02: ELECTRIC FIELD OF RING OF CHARGE - MODEL
Aid in the visualization of the electric field of a ring of charge
Read More
J3-04: ELECTRIC FIELD LINES - SOAP BUBBLES
Show the shape of electric field lines for a large dipole by observing soap bubbles move along the lines
Read More
J3-05: VAN DE GRAAFF - INDUCTION WITH SPHERES AND NEON BULB
Demonstrate the existence of electric fields and to identify the polarity of the charge on a sphere
Read More
J3-06 ELLIPSOIDAL CONDUCTOR
Demonstrates that charge distribution on a conductor depends on the surface curvature
Read More
J3-07: VAN DE GRAAFF - DISCHARGE TO VARIOUS RADII
Demonstrate that for a charged conductor a smaller radius produces a higher electric field
Read More
J3-08 VAN DE GRAAFFS - INTERACTING FIELDS
Shows field lines for two identical charges
Read More
J3-11: EQUIPOTENTIALS/LINES OF FORCE - ONE CHARGE
Aid in visualization of equipotentials and lines of force
Read More
J3-13 POTENTIAL SURFACE MODEL WITH E FIELD VECTORS
Illustrates the relationship between the electrostatic potential and the electric field
Read More
J3-14 FLUX MODEL - ELECTROSTATICS
Aid in visualizing flux at an angle through a surface
Read More
J3-21 FARADAY CAGE
Demonstrates that the electric field within a closed conducting surface is zero
Read More
J3-22: FARADAY CAGE - ELECTROSCOPE
Demonstrate that the electric field within a closed surface is zero
Read More
J3-23 FARADAY CAGE - RADIOWAVES
Demonstrates that radio waves cannot penetrate a Faraday cage
Read More
J3-24 HOLLOW CONDUCTING SPHERE
Demonstrates that charge resides on the outside surface of a conductor
Read More
1