Follow
Home
About Us
Facility Staff
Directions
Demonstration Services
Demonstrations
Place an Order
For Regularly Held Classes
For Special Events
How to Place a Demonstration Request
Demonstrations by Class
Requested Demonstrations
Faculty Forum
Outreach Forms
Liquid Nitrogen for Demonstrations
Tools & Resources
Demonstration Videos
Teaching Aid Animations
Directory of Simulations
LecDem Blog
UMD Physics Climate Committee
Discussion Forum
Links for Educators
Archived LecDem Site (~1996-2008)
Bibliography
UMD Society of Physics Students
Outreach Program Demonstrations
Outreach Programs
Outreach Program Materials
Popular Demos for Classes
News
UMD COVID-19 Dashboard
Outreach Program Homepage
UMD Physics Summer Programs
Conference for Undergraduate Underrepresented Minorities in Physics
Maryland STEM Festival
Profiles in Physics @ UMD
Quotes from our fans!
Physics is Phun October 2022
Contact Us
PHYS260
H1-01 BELL IN VACUUM
Category:
H1 Nature of Sound
Purpose
:
Demonstrates sound wave requirement for a medium
G4-02 RIPPLE TANK
Category:
G4 Mechanical Waves - Two Dimensional
Purpose
:
Illustrates wave phenomena water surface
G3-53 STANDING WAVES IN A STRING
Category:
G3 Mechanical Waves - One Dimensional
Purpose
:
Demonstrates standing waves on a thin string
G3-51 ROPE WAVE GENERATOR - FREQUENCY VS. WAVELENGTH
Category:
G3 Mechanical Waves - One Dimensional
Purpose
:
Shows the relationship between frequency and wavelength for fixed tension cord
G3-28 SUSPENDED SLINKY
Category:
G3 Mechanical Waves - One Dimensional
Purpose
:
Shows longitudinal and transverse traveling waves & standing waves
G3-21 TRANSVERSE WAVES ON A LONG SPRING
Category:
G3 Mechanical Waves - One Dimensional
Purpose
:
Demonstrates traveling waves
G3-01 SHIVE WAVE MACHINE - TRAVELING WAVES
Category:
G3 Mechanical Waves - One Dimensional
Purpose
:
Demonstrates traveling waves
G2-01 MASS ON SPRING - HAND HELD
Category:
G2 Resonance and Coupled Oscillations
Purpose
:
Demonstrates resonance and phase shift at resonance
G1-60 CHAOS - TWO BIFILAR PENDULA
Category:
G1 Simple Harmonic Motion
Purpose
:
Illustrates chaotic motion
G1-52 STRINGLESS PENDULUM
Category:
G1 Simple Harmonic Motion
Purpose
:
Demonstrates an example of SHM
G1-15 PENDULA WITH 4 TO 1 LENGTH RATIO
Category:
G1 Simple Harmonic Motion
Purpose
:
Shows that period of a simple pendulum is proportional to the square root of its length
G1-14 PENDULA WITH DIFFERENT MASSES
Category:
G1 Simple Harmonic Motion
Purpose
:
Demonstrates independence of a simple pendulum's period with mass of the bob.
G1-11 COMPARISON OF SHM AND UCM
Category:
G1 Simple Harmonic Motion
Purpose
:
Demonstrates the relationship between simple harmonic motion and uniform circular motion.
G1-01 EXAMPLES OF SIMPLE HARMONIC MOTION
Category:
G1 Simple Harmonic Motion
Purpose
:
Illustrates simple harmonic motion
F5-22 VENTURI TUBE WITH PING PONG BALLS
Category:
F5 Forces in Moving Fluids
Purpose
:
Illustrates the venturi effect.
F5-21 VENTURI TUBE WITH MANOMETERS
Category:
F5 Forces in Moving Fluids
Purpose
:
Illustrates the venturi effect
F2-21 REACTION TO BUOYANT FORCE
Category:
F2 Buoyancy
Purpose
:
Demonstrates the reaction force using a liquid.
F2-06: BUOYANCY - SINKING BOAT
Category:
F2 Buoyancy
Purpose
:
Illustrates buoyancy
F2-05 BUOYANCY - BOAT AND ROCK
Category:
F2 Buoyancy
Purpose
:
Illustrates buoyancy
F2-01 ARCHIMEDES' PRINCIPLE
Category:
F2 Buoyancy
Purpose
:
Demonstrates the buoyant force on a body submerged in a fluid to be equal to the weight of the displaced fluid.
Start
Prev
1
2
3
4
5
6
7
8
Next
End
Page 7 of 8
A General Materials and Mathematics
A1 Basic Materials and Measurement
A2 Mathematics
B Statics
B1 Center of Mass Statics
B2 Equilibrium of Forces and Torques
B3 Simple Machines
B4 Elasticity
C Kinematics and Dynamics
C1 Center of Mass Motion
C2 Kinematics in One and Two Dimensions
C3 First Law of Motion
C4 Second Law of Motion
C5 Third Law of Motion
C6 Friction
C7 Collisions
C8 Mechanical Energy and Power
D Rotational Mechanics
D1 Rotational Kinematics and Dynamics
D2 Moment of Inertia
D3 Angular Momentum
D4 Gyroscopes
D5 Rotational Esoterica
E Gravitation and Astronomy
E1 Gravitation and Orbits
E2 Astronomy
F Fluid Mechanics
F1 Pressure in Static Fluids
F2 Buoyancy
F3 Surface Tension
F4 Fluid in Motion
F5 Forces in Moving Fluids
G Vibrations and Mechanical Waves
G1 Simple Harmonic Motion
G2 Resonance and Coupled Oscillations
G3 Mechanical Waves - One Dimensional
G4 Mechanical Waves - Two Dimensional
H Sound
H1 Nature of Sound
H2 Wave Properties of Sound
H3 Standing Sound Waves
H4 Music
H5 The Ear
H6 The Voice
I Thermodynamics
I1 Thermal Properties of Matter
I2 Transfer of Heat
I3 Gases
I4 Changes of State
I5 Laws of Thermodynamics
I6 Kinetic Theory and Statistical Mechanics
I7 Solid State and Low Temperature Physics
J Electostatics and Magnetostatics
J1 Electrostatic Charge and Force
J2 Electrostatic Devices and Applications
J3 Electric FIelds and Potential
J4 Capacitance and Polarization
J5 Magnetostatics
J6 Electromagnets
J7 Magnetic Materials
K Electromagnetic Principles
K1 Forces on Moving Charges
K2 Electromagnetic Induction
K3 Transformers
K4 Motors and Generators
K5 Electrical Properties of Matter
K6 Electric Circuits and Instruments
K7 RLC Circuits
K8 Electromagnetic Waves and Sources
L Geometrical Optics
L1 Light Sources and Light Rays
L2 Plane Mirrors
L3 Curved Mirrors
L4 Refraction
L5 Total Internal Reflection
L6 Lenses
L7 Optical Instruments
M Wave Optics
M1 Interference and Diffraction - Slits and Gratings
M2 Diffraction - Circular
M3 Interferometers
M4 Thin Film Interference
M5 Interference and Diffraction Esoterica
M6 Holograms
M7 Linear Polarization and Scattering
M8 Optical Activity and Birefringence
M9 Circular Polarization
N Spectra and Color
N1 Continuous Spectra
N2 Line Spectra
N3 Color
O Vision
O1 Image Production
O2 Visual Latency
O3 Color Vision
O4 Optical Illusions
P Modern Physics
P1 Relativity
P2 Quantum Mechanics
P3 Atoms and Molecules
P4 Nuclei and Particles
Q Biophysics
Q1 Musculoskeletal Systems
Q2 Organs
Q3 Genetics and Molecular Biology
F1-01 FLUID PRESSURE VS. DEPTH
Demonstrates that fluid pressure increases linearly with depth and is isotropic.
Read More
F1-02: FLUID PRESSURE VS DEPTH - ANEROID GAUGE
Show water pressure versus depth with an aneroid gauge.
Read More
F1-03: PASCAL'S VASES
Show water pressure versus depth with an aneroid gauge.
Read More
F1-04: EQUILIBRIUM TUBES
Demonstrate that pressure is transmitted equally throughout a fluid.
Read More
F1-05: DOES WATER SEEK ITS OWN LEVEL?
A trick to challenge the students.
Read More
F1-06 WATER SEEKS ITS OWN LEVEL
Demonstrate that pressure is dependent only on depth, and not on the shape of the container.
Read More
F1-11: HYDRAULIC PRESS
Demonstrate dramatically Pascal's Law and the large forces attainable using hydraulic systems.
Read More
F1-12: PASCAL'S LAW - COILED TUBE PARADOX
Illustrate Pascal's law in a dramatic way.
Read More
F1-13: CONSTANT WATER PRESSURE
Demonstrate a mechanism which produces a constant water pressure.
Read More
F1-14: PISTON DIAMETER VS TRAVEL - WORKING MODEL
Show that with an incompressible fluid the bigger piston moves more slowly than the smaller piston.
Read More
F1-15: PRESSURE GLOBE
Demonstrate principles of air pressure.
Read More
F1-21: LIPLESS STRAW
Demonstrate the role of atmospheric pressure in the operation of a drinking straw.
Read More
1