Follow
  • Welcome to Spring 2025!
  • Demo Highlight: Convection With High & Low Candles
  • Demonstration Highlight: Inertial Reference Frame
  • Demo Highlight: Ring and Disc on Inclined Plane
  • Demonstrations
  • New Resource: Directory of Simulations
  • New Resource: Demonstration Video Channel
  • Visit the UMD COVID-19 Dashboard

Welcome to 2025! We at the Lecture Demonstration Facility are looking forward to working with you in the spring semester.

We appreciate as much advance notice of demonstrations as you can give; but at a minimum, please remember to order your demonstrations before the order cutoff deadline: For morning classes, before 1PM the previous working day; for afternoon classes, before 4AM the day of the class. Where possible, we appreciate having the orders at least one full working day ahead, to ensure plenty of time to make sure everything is ready for you. As always, we’ll meet with you before your class to go over the demos and make sure everything is ready to be used effectively and safely.

Here's to a great semester!

The behaviour of gases as they're heated and cooled can be confusing, but is really important to understanding a lot of things in daily life, from the weather outside to heating a house to designing power plants... or simply to how candles burn. Demonstration I2-45: High & Low Candles in a Cylinder gives us an example of this.

 I2-45: Two small candles burn inside a clear plastic cylinder. One sits at table height, the other is elevated on a slim metal pedestal.

Read more on the Physics LecDem Blog!

 

 

Welcome back! Today we’re taking a look at a popular demonstration related to the concept of relativity.

 When we observe and measure motion, we are inevitably making the measurement against some frame of reference. An inertial reference frame is the technical term for a frame of reference in which an object is observed to have no outside forces acting on it, so that it is moving freely in space. Sometimes we have to go to great lengths to determine what such a frame of reference might be – and in the case of Demonstration P1-02, it is literally a metal frame!

 Demonstration P1-02: The Inertial Reference Frame, a large aluminum framework with a mounted winch to lift it.

Read more about this exciting demonstration and how it can be used in class in our latest blog post.

In recent years, the classic term “moment of inertia” has started to be largely retired in favor of the more descriptive “rotational inertia;” likely a good choice, as “moment” has long since ceased to have any non-time-related usage in everyday English. But call it what you will, it can be a challenging concept for beginning students to wrap their heads around.

Demonstration D2-01: Ring and Disc on Inclined Plane is a useful illustration for clarifying this concept. Two objects of similar mass and radius, a metal ring and a solid wooden disc, are placed on an inclined plane with no initial velocity. As they are accelerated by gravity, the disc quickly outpaces the ring. You can invite students to make a prediction ahead of time about their behaviour, presenting it as a race between the two objects, and invite them to discuss the results afterwards.

A wooden disc and a metal ring sit on a table next to a wooden ramp

Read more on our blog!

 

In support of most classes moving to an online model this year, the Lecture-Demonstration staff are doing our part to help connect you to resources you need for teaching remotely. As one part of this project, we have begun compiling a Directory of Simulations from around the internet, organized by general area of physics. Find it under the Tools and Resources menu above, or click the image below.

Sample subsection titles: Electricity & Magnetism Simulations, Mathematics Simulations, Optics Simulations, Oscillations & Waves Simulations, Quantum Simulations, Thermodynamics & Statistical Mechanics Simulations

There are a tremendous number of simulations out there, that folks have been creating for years. We’re testing them out, choosing ones that we can confirm currently work (always a question as internet technology marches on) and that seem useful for our department’s classes. As of this posting, we have just over fifty simulations collected. Our initial focus has been on physics that is hard to demonstrate in the classroom, or experiments that are difficult to present as static pictures or live video.

This project is ongoing! As we continue to explore we will be adding more subjects and more demonstrations per subject. We also invite recommendations! If you have a favourite simulation, let us know (email lecdemhelp at physics.umd.edu) so we can check it out and add it to the directory.

We’ll have more new projects posted soon; watch the site for news!

demovideospreviewmatrix1

In our ongoing work to support remote teaching, we are pleased to announce a new resource. Over the summer of 2020, a Teaching Innovation Grant helped to create our new Demonstration Videos. These can be used for remote, hybrid, and in-person classes to present demonstrations in conjunction with class engagement questions.

The videos have their own YouTube channel, linked both here and on the Tools & Resources Menu above; check them out today!

 

Science is all about data, and our current pandemic is no different. 

Be sure to check the UMD COVID-19 Dashboard for the latest campus data and links to reopening plans and  proper safety procedures.

Keep Terps Safe - UMD COVID Public Dashboard

 

LecDemBlog (maintopa)

Welcome back! For our latest demonstration highlight, we’re exploring the concept of buoyancy, and a few of our demonstrations that let us see buoyancy in action in the classroom.

Technically speaking, buoyancy is the upward force that a fluid exerts on an object that is immersed (partly or wholly) in it. This is the force that determines whether things float or sink, and why some things feel lighter when you hold them in the water rather than in air.

First developed more that 2200 years ago, Archimedes’ Principle (in more modern terms) states that the upward force (or buoyant force) on an object submerged in a fluid is equal to the weight of fluid that it displaces. This means that if the average density (the mass per unit volume) of an object is greater than that of the fluid, it will sing, as the force of gravity on it is still greater than the buoyant force. If its average density is less than that of water, it will float, as the buoyant force is greater than the force of gravity.

 two cylinders hang from a spring scale over a bucket of water

We can show the physics behind this in the classroom with demonstration F2-01. Hanging from a spring scale are two cylinders of equal volume – one solid metal cylinder, and one an empty bucket. We lower the solid cylinder into the water, and can measure the buoyant force as the change in weight on the scale. Then, we pour water into the empty cylinder. A volume of water has a weight equal to the buoyant force on an object of that volume, so when we’ve poured in water to equal the volume of the solid cylinder, the weight shown on the scale is back to where it was when both cylinders were hanging in the air!

Conversely, consider demonstration F2-05. A lightweight model boat containing a small, dense weight is floating in a tank water. We can use tape to make the height of the water on the side of the tank. Then the weight is removed from the boat and placed in the bottom of the tank, and we see that the water level on the side of the tank goes down, as the boat floats higher in the water.

a clear plastic boat floats in a clear glass tank of water. A lead weight rests in the boat.

The weight is denser than the water. When it is sitting in the bottom of the tank, it displaces an amount of water equal to its fairly small volume. When it is in the boat, though, in order to float the boat-and-weight combination has to displace enough water to match the mass of this boat-rock system, pushing the level in the tank higher. When the weight is removed, the average density of the boat is reduced.

You can experiment with this in the classroom or at home with this Buoyancy Simulation https://ophysics.com/fl1.html by physics teacher Tom Walsh. Try changing the density of the submerged object and the density of the fluid, and see how it floats! You can have the simulation add a free-body diagram to show you the forces in action.