One popular demonstration in our collection for introducing concepts of wave optics is M1-11: Laser Interference: Fixed Double Slits.
Collimated light waves come from the laser and pass through a pair of narrow slits in the slide; the light passes through and then projects on the distant screen. But light travels as an electromagnetic wave, so when the light comes out of the two slits, it forms two wavefronts, just like ripples from two stones dropped in a pond. These two wavefronts can interfere with each other, as we can model with this pair of overlapping concentric circles. Where two peaks or two valleys of the wave pattern line up, they add together, interfering constructively; when a peak and a valley overlap, they cancel out, interfering destructively. The same happens with light waves; the light from the two slits overlaps, and creates a pattern of bright spots (constructive interference) and dark spots (destructive interference).
When using this in class, we can adjust the slide to use different sets of slits, with different slit widths and different spacing between the slits. This is a good opportunity to challenge students to predict how changing these two variables will change the resulting interference pattern.